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Background & Challenges

With Music Frameworks and new musical
features, we combine music domain
knowledge with deep learning, and factor
music generation into sub-problems, which
allows simpler models, requires less data
and achieves high musicality.

Model larger scale music structure & multi-levels of repetition

Controllability & customization —— both macro & micro level

Scarcity of training data & copyright limitations

Style of a specific song = style of a genre

Hierarchical Music Structure Representation — Music Framework
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Architecture

Dataset: POP909 (Pop song), Symbolic Score
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* Useful musical features & encodings to apply music domain knowledge

. . . . « Comparison of different DL architectures for relatively small data
» Multiple Options for Repeated Phrase Variation + Sizable listening test evaluating musicality
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* E.g. Integrate Dynamic Time Warping




